A STEP TOWARD EVOLVING BIPED WALKING BEHAVIOR THROUGH INDIRECT ENCODING by RANDAL

نویسنده

  • S. OLSON
چکیده

Teaching simulated biped robots to walk is a popular problem in machine learning. However, until this thesis, evolving a biped controller has not been attempted through an indirect encoding, i.e. a compressed representation of the solution, despite the fact that natural bipeds such as humans evolved through such an indirect encoding (i.e. DNA). Thus the promise for indirect encoding is to evolve gaits that rival those seen in nature. In this thesis, an indirect encoding called HyperNEAT evolves a controller for a biped robot in a computer simulation. To most effectively explore the deceptive behavior space of biped walkers, novelty search is applied as a fitness metric. The result is that although the indirect encoding can evolve a stable bipedal gait, the overall neural architecture is brittle to small mutations. This result suggests that some capabilities might be necessary to include beyond indirect encoding, such as lifetime adaptation. Thus this thesis provides fresh insight into the requisite ingredients for the eventual achievement of fluid bipedal walking through artificial evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Step Length and Step Period on Walking Speed and Energy Consumption: a Parameter Study

Stability and performance are two main issues in motion of bipeds. To ensure stability of motion, a biped needs to follow specific pattern to comply with a stability criterion such as zero moment point. However, there are infinity many patterns of motion which ensure stability, so one might think of achieving better performance by choosing proper parameters of motion. Step length and step perio...

متن کامل

On the Desing and Test of a Prototype of Biped Actuated by Shape Memory Alloys

In this paper the design of a biped robot actuated with Shape Memory Alloy (SMA) springs with minimum degrees of freedom is presented. SMA springs are a class of smart materials that are known for their high power to mass and volume ratios. It was shown that utilizing spring type of SMAs have many advantages as large deformation, smooth motion, silent and clean movement compared to ordinary typ...

متن کامل

From Passive Dynamic Walking to Passive Turning of Biped walker

Dynamically stable biped robots mimicking human locomotion have received significant attention over the last few decades. Formerly, the existence of stable periodic gaits for straight walking of passive biped walkers was well known and investigated as the notion of passive dynamic walking. This study is aimed to elaborate this notion in the case of three dimensional (3D) walking and extend it f...

متن کامل

Controlling the Walking Period of a Pneumatic Muscle Walker

In this paper, we investigate the limit cycle of a biped walker driven by pairs of pneumatic artificial muscles. We show, experimentally, that the period of the limit cycle changes when different control parameters are applied and estimate the relationship between the period and the parameters through trials. A step-by-step feedback controller is proposed to stabilize walking based on the estim...

متن کامل

Transferring Human Biped Walking Function to a Machine -Towards the Realization of a Biped Bike-

In our study, we accomplished human walking motion in 2D, using a biped model with simple bar-like legs, and reciprocal leg stretch-contraction motion. Although extremely simple, this model possesses common characteristics to that of human biped walking, such as normal step length, duty factor, and reaction force patterns. We found that, by using additional stretchcontraction mechanisms to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010